Tag Archives: Carol Dweck

SOLO, Learning and Teaching

For educators, there is a need to identify how they can best help students to achieve their potential. School makes up a significant part of students’ young lives, so it is unsurprising that:

Schools shape and change beliefs, both as purveyors of knowledge and as epistemological training grounds for developing students. (Schraw, 2001:406)

The challenge is to balance the imparting of knowledge with providing students with opportunities to develop positive epistemological beliefs. New initiatives often focus on the former, specifically teaching methods, possibly because this is an easier area to demonstrate impact. As Hattie (2012) notes, most of what we do as teachers will have some effect on the students we teach.

OfSTED’s (2012/13b:32) definition of an ‘Outstanding’ school highlights the importance of students ‘making and exceeding expected progress’, whatever their starting point. To achieve this, schools need to know what causes variance between students, both between schools and between students in the same school. Hattie (2003) identifies several elements which are responsible for potential variance in achievement. The most significant factor identified was the student themselves, being responsible for 50% of variance. Student engagement, beliefs and motivation is at the heart of the matter.

Levin (2010:89) explains that:

Schools with higher levels of engagement are more successful with students from all kinds of backgrounds.

This supports Hattie’s (2003) findings that home is less significant an influence than perhaps we might expect.

The second most significant influence was the teacher (30%):

It is what teachers know, do and care about which is very powerful in this learning equation. (Hattie, 2003:2)

However, Schraw (2001:406 summarises a key difficulty with addressing the issue:

The existing research invites the conclusion that schools should make the effort to change beliefs in positive ways, although it is less clear how those changes should occur.

Hattie’s work (2003, 2012) may give us an indication of how these changes should be approached; if both students and teachers are responsible for 80% of the variance between student outcomes, it is here that the focus needs to be. Ideally, a focus on techniques and strategies which encourage teachers to teach in the most effective manner, while encouraging students to learn and develop positive epistemological beliefs.

Students’ Learning

To understand how students learn effectively, it is useful to be aware of a number of key areas. Firstly, how do epistemological beliefs affect learning? And secondly, which specific traits does an effective learner have?

 Hofer & Pintrich (1997:88) define personal epistemology as:

How individuals come to know, the theories and beliefs they hold about knowing, and the manner in which such epistemological premises are a part of and an influence on the cognitive processes of thinking and reasoning.

Resent research into students’ beliefs about learning (Pintrich, 2002; Cano & Cardelle-Elawar, 2004; Dweck, 2006; Barnard et al., 2008; Afflerbach et al., 2013) have highlighted the link between how students view learning and their academic performance. Cano & Cardelle-Elawar (2004:182) suggesting that:

The evidence that secondary school students hold immature beliefs…might go some way to explaining the poor academic achievement of many students.

As teachers, we often see this manifested as a willingness to give up when challenged, reluctance to work hard for results and the belief that they are either ‘good’ or ‘bad’ at a particular subject. I know that, in the past, I have been guilty of this, especially with Maths – in reality, I’m not actually bad at Maths, I just find it harder.

However, Louca et al. (2004:58) assert, in their study of teaching science to 3rd grade students, that students are not aware of these ‘beliefs of theories’, but instead ‘have a range of cognitive resources for understanding knowledge’. With many schools implementing ‘learning to learn’ schemes, students are now more likely to have an awareness of how they learn. At the heart of this awareness, there needs to be the belief that learning is complex and requires effort.

An effective student needs to develop a wide range of skills and attributes:

Learning at school requires students to pay attention, to observe, to memorize, to understand, to set goals and to assume responsibility for their own learning. These cognitive activities are not possible without the active involvement and engagement of the learner. (Vosniadou, 2001:8)

The emphasis, for effective learning and progress to take place, is on the need for students to be self-regulated (Barnard et al., 2008; Nückles et al., 2009; Afflerbach et al., 2013) and for students to have some control over their learning (Skinner et al., 1998, cited in Yeh, 2010; Vosniadou, 2001; Zull, 2002).

What Makes a Teacher Effective?

Researchers and policymakers have often tried to define what makes an effective teacher; however arriving at a definition can be fraught with difficulties. Shulman (1987:6) notes that these definitions often ‘became items on tests or on classroom-observation scales’ which ultimately end up as a restrictive check-list. Levin (2010:90) points out that, proposals for improving teaching ‘have been made many times before’ and that merely listing suggestions is not enough – we need concrete examples of how this might be achieved.

Although our knowledge of how the brain works has developed over the past century, the topic can be a contentious one. Information processing, ‘the mental operations that come between a stimulus and response’ (Malim & Birch, 2005:25), is at the centre of discussion between cognitive psychologists, especially when related to student learning (Vygotsky, 1978 cited in Vosniadou, 2001; Kolb, 1984; Baddeley, 1999; Bischoff & Anderson, 2001; Tsai & Huang, 2001). Kirschner et al. (2006:77) highlight the importance of an understanding of the brain’s processes:

Any instructional theory that ignores the limits of working memory when dealing with novel information, or ignores the disappearance of those limits when dealing with familiar information, is unlikely to be effective.

 As a result of the complexities, and lack of a definitive explanation of how the brain works, there have been disagreements between academics as to the best mode of instruction, in particular between project based learning and direct instruction (Bishoff & Anderson, 2001; Wallace & Louden, 2003; Gauthier & Dembélé, 2004; Zull, 2002; Wu & Tsai, 2005; Kirschner et al., 2006; Hmelo-Silver et al., 2007; Granger et al., 2012; Hodges, 2012). These discussions can become polarised, while the most effective teaching is likely to judiciously use elements from both modes.

However, there also appear to be several areas of agreement; Hattie (2012:16) states that:

The act of teaching requires deliberate interventions to ensure that there is cognitive change in the student; thus the key ingredients are being aware of the learning intentions, knowing when a student is successful in attaining those intentions, having sufficient understanding of the student’s prior understanding as he or she comes to the task and knowing enough about the content to provide meaningful and challenging experiences so that there is some sort of progressive development.

This suggests that an in depth knowledge of the students is one of the hallmarks of an effective teacher. In addition, we can add: high expectations (Levin, 2010; OfSTED, 2012), formative assessment (Black & Wiliam, 2006), differentiation (Hattie, 2003; Yeh, 2010; Hook & Mills, 2012; OfSTED, 2012) and feedback (Hattie, 2003, 2012; Black & Wiliam, 2006; OfSTED, 2012). The SOLO taxonomy can offer teachers a structure for implementing these skills in conjunction with the teacher’s existing strategies.

References:

Afflerbach, P., Cho, B-Y., Kim, J-Y., Crassas, M., & Doyle, B. (2013) ‘Reading: What else matters besides strategies and skills?’ The Reading Teacher, 66 (6), pp. 440–448. Available at: http://doi.wiley.com/10.1002/TRTR.1146 [Accessed March 2, 2013].

Baddeley, A. D. (1999) Essentials of Human Memory. Hove: Psychology Press

Barnard, L., Lan, W., Crooks, S., & Paton, V. (2008) ‘The relationship between epistemological beliefs and self-regulated learning skills in the online course environment’. MERLOT Journal of Online Learning and Teaching 4 (3) pp. 261-266

Bischoff, P.J. & Anderson, O.R. (2001) ‘Development of knowledge frameworks and higher order cognitive operations among secondary school students who studied a unit on ecology’. Journal of Biological Education 35 (2), pp. 81-88.

Black, P. & Wiliam, D., 2009 ‘Developing the theory of formative assessment’ J. Gardiner, ed. Educational Assessment Evaluation and Accountability, 1 (1), pp. 5–31. Available at: http://eprints.ioe.ac.uk/1119/. [accessed 23 August 2012]

Cano, F. & Cardelle-Elawar, M. (2004) ‘An integrated analysis of secondary school student’s conceptions and beliefs about learning’. European Journal of Psychology of Education 19 (2) pp. 167-187.

Dweck, C. (2006) Mindset: The New Psychology of Success. New York: Random House.

Gauthier, C. & Dembélé, M. (2004) ‘Quality of teaching and quality of education: a review of research findings. UNESCO. Education for All Global Monitoring Report. 2005/ED/EFA/MRT/PI/18

Granger, E. M., Bevis, T. H., Saka, Y., Southerland, S. A., Sampson, V., & Tate, R. L. (2012) ‘The efficacy of student-centered instruction in supporting science learning’. Science (New York, N.Y.), 338 (6103), pp. 105–8. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23042893 [Accessed March 11, 2013].

Hattie, J. (2003) Teachers make a difference: what is the research evidence? Melbourne: Australian Council for Educational Research

Hattie, J. (2012) Visible Learning for Teachers: Maximizing Impact on Learning. Abingdon: Routledge

Hmelo-Silver, C. E., Duncan, R.G. & Chinn, C. A. (2007) ‘Scaffolding and Achievement in Problem-Based and Inquiry Learning: A Response to Kirschner, Sweller, and Clark (2006)’. Educational Psychologist  42 (2) pp. 99–107. Available at: http://www.tandfonline.com/doi/abs/10.1080/00461520701263368.

Hodges, G. C., (2012) ‘Research and the teaching of English: Spaces where reading histories meet’. English Teaching: Practice and Critique 11 (1), pp. 7–25.

Hofer, B., & Pintrich, P. (1997) ‘The development of epistemological theories: Beliefs about knowledge and knowing and their relation to learning’. Review of Educational Research 67 (1) pp. 88-140.

Hook, P. & Mills, J. (2012) SOLO Taxonomy: A Guide for Schools Book 2: Planning for differentiation. Laughton, UK: Essential Resources Educational Publishers

Kirschner, P.A., Sweller, J. & Clark, R.E. (2006) ‘Work : An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching’. Learning  41 (2), pp. 75–86. Available at: http://www.informaworld.com/openurl?genre=article&doi=10.1207/s15326985ep4102_1&magic=crossref.

Kolb, D. A. (1984) Experiential Learning: experience as the source of learning and development. New Jersey: Prentice-Hall

Levin, B. (2010) ‘What did you do at school today?’ Kappan. 91 (5) pp. 89-90. http://www.education.auckland.ac.nz/webdav/site/education/shared/about/centres/uacel/docs/InCanadaWDYDIST1002lev.pdf [accessed 8 April 2012]

 Louca, L., Elby, A., Hammer, D., & Kagey, T. (2004) ‘Epistemological resources: Applying a new epistemological framework to science instruction’. Educational Psychologist 39 (1) pp. 57-68.

Malim, T., & Birch, A. (2005) Introductory Psychology. Baisingstoke: Palgrave Macmillan

OfSTED (2012/13a) The framework for school inspection. HMI 120100. London: OfSTED publications.  http://www.ofsted.gov.uk/resources/framework-for-school-inspection [accessed 15 April 2013]

OfSTED (2012/13b) School Inspection Handbook. HMI 120101. London: OfSTED publications.  http://www.ofsted.gov.uk/resources/school-inspection-handbook  [accessed 15 April 2013]

Pintrich, P. (2002) Future challenges and directions for theory and research on personal epistemology. In B. Hofer and P. Pintrich (Eds.), Personal epistemology: The psychology of beliefs about knowledge and knowing (pp.389-414). Mahwah, New Jersey: Lawrence Erlbaum Associates.

Schraw, G. (2001) ‘Current themes and future directions in epistemological research: A commentary.’ Educational Psychology Review. 13 (4) pp. 451-464.

Shulman, L.S., (1987) ‘Knowledge and Teaching: Foundations of the New Reform’. Harvard Educational Review, 57 (1), pp. 1–21.

Tsai, C-C. and Huang, C-M. (2001) ‘Development of cognitive structures and information processing strategies of elementary school students learning about biological reproduction’. Journal of Biological Education 36 (1) pp. 21-26.

Vosniadou, S. (2001) How Children Learn. UNESCO. Educational Practices Series 7. http://www.ibe.unesco.org/fileadmin/user_upload/archive/publications/EducationalPracticesSeriesPdf/prac07e.pdf [accessed 12 December 2012]

Wallace, J. & Louden, W. (2003) ‘What we don’t understand about teaching for understanding: questions from science education’, Journal of Curriculum Studies, 35, 5 pp. 545-566

Wu, Y-T. and Tsai, C-C. (2005) ‘Effect of Constructivist Oriented Instruction on Elementary School Students’ Cognitive Structures’. Journal of Biological Education 39 (3), pp. 113-119.

Yeh, S. (2010) ‘Understanding and addressing the achievement gap through individualized instruction and formative assessment.’ Assessment in Education: Principles, Policy & Practice 17 (2) pp. 169-182

Zull, J. (2002). The Art of Changing the Brain: Enriching the Practice of Teaching by Exploring the Biology of Learning. USA: Stylus Publishing.